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OVER A CONE WITH AN ATTACHED SHOCK WAVE

By Richard A. Hord
SUMMARY

It is shown that the streamlines in an angular neighborhood of the
surface of an unyawed circular cone with an attached shock wave are,
to a first approximation, portions of hyperbolasg. This fact is used
asg a basgis for the development of an approximate solution in which the
shock-wave orientation and the flow field behind the shock wave are
given explicitly in terms of the free-stream Mach number, the vertex
angle of the body cone, and the ratio of specific heats of the gas.
The approximate solution is compared with other approximate solutions
for the cone.

INTRODUCTTION

It is well known that within calculable limits the adiabatic steady
flow of an inviscid perfect gas over a nonlifting circular cone assumes
a relatively simple form. The essentlal characteristic of this type of
flow is an attached cone-shaped shock wave behind which the velocity and
state of the gas are constant on conical surfaces whose axes and ver-
tices coincide with those of the body cone and the shock-wave cone.

The basic features of this type of supersonic flow, together with
a8 graphicel method for calculating the flow field by starting with a con-
ical shock wave of given vertex angle and entering air at a given Mach
number, were described by Busemann (ref. 1). Taylor and Maccoll (ref. 2)
conducted a comprehensive investigation of the problem in which exact
equations governing the flow were developed and solved numerically.
The numerical results were shown to bear excellent agreement with the
experimentally determined values. Subsequently, Maccoll (ref. 3)
extended the numerical computations to cones with larger vertex angles
by using solutions in series for the velocity components in the flow
field behind the shock wave and calculated a maximum possible value for
the vertex angle of a cone with an attached shock wave. The most exten-
sive tables and graphs of the flow variables, which were prepared on the
basis of the work of Taylor and Maccoll, are contained in reference L.
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Even though axially symmetric flow over a cone with an attached
gshock wave is one of the few compressible-~flow problems which admit of
precise solutions with reasonable computational labor, approximate
solutions in closed form are of use in certain cases. Approximate
solutions for the cone may be used in the rapld calculation of super-
sonic flow over pointed bodies of revolution. As a second example, an
approximate solution relatihg the velocity field behind the shock wave
to the velocity at the body-cone surface may, in some instances, be
cambined with information on strong shock waves in a real gas to obtain
estimates of the effects of vibrational excitation and dissociation on
the flow over conical tips in the hypersonic range.

The first approximmte solution for the cone resulted from the line-
arized treatment by Von Kdrmén and Moore (ref. 5) of the axially sym-
metric supersonic flow over bodles of revolution. In addition to the
further development of linearized theory (for example, ref. 6 by
Iighthill), Van Dyke (ref. 7) has developed a second-order theory in
which a first-order solution of a given problem constitutes the starting
point for an iteration procedure aimed at obtaining closer approxima-
tions. As one might expect, the increase in accuracy is accompanied
by a considerable increase in computational effort.

Since the linear and second-order theories are based upon the
assumption of small perturbations and flow that is free of shock waves,
they are definitely limited, particularly in the realm of high Mach
numbers, both in accuracy and in range of applicability.

The conical-shock-expansion method of Eggers and Savin (ref. 8) for
calculating the flow over pointed bodies of revolution at high super-
sonic airspeeds utilizes approximate solutions for the cone to deter-
mine the nature of the flow in the neighborhood of the vertex. Since
the existence of an attached shock wave is essential to these approxi-
mations, they are not subject to the same limitations as the perturba-
tion methods and, in fact, achileve their best accuracy in the high
Mach number range. Of the three approximate solutions presented for
the cone, only the third (ref. 8, appendix A) can be applied with ease
comparable to that of the small-perturbation solution of Von Kedrmdn
and Moore.

In the present report, it is shown that in an angular neighborhood
of the body cone the streamlines are, to a first approximation, por-
tions of hyperbolas. In keeping with the conical nature of the flow
field behind the shock wave, the hyperbolas of this family are magni-
fications of one another with respect to thelr common center, the cone
vertex. The generators of the body cone (the whole lines, rather than
the half-lines which terminate at the vertex) are the asymptotes of
the hyperbolas of the family. Thus, the conjugate axes of the hyper-
bolas all lie on the cone axis, and the curves themselves are symmetric
about the plane normal to the cone axis at the vertex.
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In the development of the present approximate solution for the non-

1ifting cone with an attached shock wave, the streamlines behind the
shock wave are assumed to be hyperbolas of the form just described.
Without further approximation being necessary, it is found that an
approximate solution can be derived which yields expressions for the
shock-wave angle, the pressure ratio across the shock wave, and the
surface velocity in terms of the free-stream Mach number, the cone
angle, and the ratio of specific heats.

SYMBOIS

local speed of sound, referred to maximum velocity ¢

maximum or limiﬁing velocity which would be attained by
expanding adiabatically into a vacuum

pressure coefficient

free-stream Mach number
static pressure

radial velocity component (as in polar-coordinate system),
positive outward along ray from cone vertex, referred to
maximum veloeity c (fig. 1)

normal velocity ccomponent (as in polar-coordinate system) ,
positive with increasing 6, referred to maximum velocity ¢
(fig. 1)

radial velocity component normal to cone axis'(as in exially
symmetric cylindrical coordinate system), positive outward
from cone axis, referred to maximum velocity c¢ (fig. 1)

velocity component parallel to cone axis, positive in positive
direction of free stream, referred to maximum velocity e
(fig. 1)

axially symmetric cylindrical coordinates with origin at cone
vertex and x-axis coincident with cone axis (fig. 1)

ratio of specific heat at constant pressure to specific heat
at constant volume

third-order remainder terms, as described in text
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0 angle which ray emanating from cone vertex makes with cone
axis (fig. 1)

T = tan 6

Subscripts:

s refers to conditions at body-cone surface

w refers to conditions immediately behind shock wave

1 refers to free-stream conditions (not used in case of free-

stream Mach number)

APPROXIMATION TO THE FORM OF THE

STREAMI.INES NEAR THE SURFACE

The second-order ordinary differential equation which Taylor and
Maccoll derived as governing the conical flow field about a nonlifting
circular cone with an attached shock wave is equivalent to the following
system of first-order differential equations (see, for example, ref. L,
pp. vii and viii, or ref. 2, pp. 281 and 282) .

au_
dae
0 (1)
av _ we - a2(2u + v cot 6)
de a2 - v

where the local gpeed of sound a is related to the radial and normal
velocity components u and v (fig. 1) by

27z1(1 2 (2)

2

Here, for the sake of simplicity, the unit of velocity has been taken
as the maximum velocity ¢ which would be attained by allowing the
gas to flow adiabatically into & vacuum.

For the purpose of the present analysis, it is convenient to trans-
form the system of equations (1). Iet vy be the velocity component
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parallel to the axis of the cone (the line whose equation is 8 = 0)
and positive in the positive direction of the free stream. Moreover,
let vy denote the radial velocity component perpendicular to the cone
axis and positive outward from this axis (fig. 1). Since the flow is

conical, v, and v, are functions of 6. The dependent variables vy

and v, are related to the dependent variables u and v by the trans-
formation

U= v, cos 8 + v, sin 0 ~ (3a)

v = -v, sin 6 + v, cos © (3b)
whose inverse is

Vy=ucos 8 - v sin 6 (ka)

Vy = u sin 6 + v cos 9 (4b)

With the change of dependent variables defined by equations (3),
the system of differential equations (1) takes the form

dvy dw. a2y
—_—= -tan e r = L (5)
ae dae al - (vr cos 6 - v, sin 6)2
and equation (2) becomes
-1
a2 =1 (l - Vx2 - Vr2) (6)
2
Dividing the system of equations (5) by 1 + tan29 and noting that
(1 + ten®0)de = sec®6 a6 = a(ten 6)
gives, in conical coordinates,
dvy . dvy a2vr 7
ar  ar 4

32(1 + T2) - (vr - Tvx)2

where T = tan 6. (The fact that this form of the equations has also
been given in ref. 9, p. 356, was recently noted.) The system of
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differential equations (7) is, then, equivalent to the second-order
differential equation derived by Taylor and Maccoll.

Even though the system of equations (7) epparently does not admit
of & solution in closed form, certain interesting and useful facts about
the existence and nature of a solution are obtainable from the theory
of functions of real variables. Conslderation is restricted to the
cases of physical interest, that is, O0< Tg< », 1< 7y < o, and

0<ug <1

It follows from the theory of functions of real variables that a
unique solution of equations (7) exists in & neighborhood of T = Tg
such that the functions vy and vy and their first derivatives with

respect to T are continuous functions. (See, for example, ref. 10,
p. 357.) Therefore, by successively differentiating equations (N, it
is evident that the higher derivetives are also continuous in a neigh-
borhood of Tg. These results imply that the velocity ratio vr/vx

and its derivatives with respect to cot 8 = 1/t must be continuous
in a neighborhood of Tg. Consequently, it is possible to apply Taylor's

theorem with a remainder (ref. 10, p. 105) to the development of the

function vy/vy in powers of cot 8§ - cot 8g = % - éLu The evaluation
8

of the coefficients for this development is a matter of straightforward
calculation utilizing equations (7) together with the boundary condition

Vr,s
Vx,s8

= T (8)

which is equivalent to the physical statement that the flow at the cone
surface is along & generator. In particular, the term of zero order in
the Taylor development is given directly by equation (8). The coeffi-
cient of the first-order term may be determined as follows:

4 Yr] _ (_Taiiz;
a(1/7) vx|g AT vy /g

= ofvy 1 dvyp _v2 3 dvy
Vyx Vp 4T v.x2 vy dr
8



NACA TN 3485 7

Similarly, the second-order coefficient is found, after some calculation,

to be
Al wr] T
2Ha(1/1)% vy, 1+ Tg?

The Taylor development, therefore, has the form

2
o el LY, TsT (1_1) ..
Vx 8 B\T g 1+ TS2 T Tg 3

or

= + ( >2+ (9)
_— — - —_— €
2
Vx T l+Tgo\T T 5
where €3 is of the order of the third power of the argument; that is,

3
1im ———2 =0
T—>Tg (; 1)

T Tg

Equation (9) can be written as

Tg2 14 Tg/T
T 1+ 71g

5 (T - )% + & . (92)

W

where 63 is also of third order. In cases in which the difference

T - Tg remains small throughout the flow field behind the shock wave

(that is, where the shock wave lies close to the cone surface), equa-
tion (9a) can be approximated by

2

i
— S

= —F (10)

s

This relation constitutes the basis of the approximate solution to be
developed. Of secondary importance in their effects upon the accuracy

of the epproximation expressed in equation (10) are (a) the tendency,
most pronounced in the case of a cone of small vertex angle, of the

factor TS/T partially to offset the increase of error with increasing -
and (b) the slight tendency of the factor l/(l + Tsz) to improve the
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accuracy with increasing cone angle. The effect of ¥ enters only in
terms of higher order. (See, for example, ref. 3, p. 466.)

The results of the foregoing analysis may be stated as follows:
In an anguler neighborhood of the body-cone surface, the variation of
the velocity ratio vp/vy with the veriable 7 = tan 6 1is, to a first

approximation, given by equation (lO)

Consider now an- axlally symmetric cylindrical coordinate system
with origin at the vertex of the body cone such that the x-axis coin- .
cides with the cone axis and has its positive direction, downstream, and
let r denote the distance of the point (x,r) in this system from the
axis. Then,

N

(11)

o |
I
-

In this coordinate system, the differential equation of a streamline is

dr _¥r
dx Vx

With the use of equation (11) and the approximate equation (10), the
differential equation of an arbitrary streamline becomes

2

g_r..="|'s E
dx r

Separating the variables and integrating gives, as the equation of the
family of streamlines,

r2 = 14%2 + Constant (12)

When the arbitrary constant of integration is permitted to take on
all positive values, equation (12) represents a family of geometrically
similar hyperbolas with centers at the origin (the cone vertex), trans-
verse axes through the origin and normal to the cone axis, and common
eccentricity csc 8g. The hyperbolas of the family have common asymp-
totes which are generators of the body-cone surface and whose equations
are

r=*tr x
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For the set of positive values of the integration constant, this family
of curves completely fills the portion of space exterior to the solid
body cone and its natural counterpart which is obtained by extending

the cone generators through the vertex. The conjugate hyperbolas,
obtained by assigning negative values to the arbitrary constant in equa-
tion (12), lie inside the cone and are without physical significance in
this case. The portions of these hyperbolas upstream of the shock wave
are discarded and replaced by parallel flow in the subsequent formulation
of the approximate solution for the flow over cones.

In the preceeding analysis, 1t has been shown that in an angular
neighborhood of the cone surface the streamlines are, to a first approxi-
mation, portions of geometrically similar hyperbolas whose common cen-
ter is the cone vertex and whose asymptotes are extended generators of
the cone surface.

The geometric form of the streamlines near the surface depends, to
a first approximation, solely on the form of the surface (that is, the
vertex angle of the cone), but is independent of the velocity at the
surface and, therefore, independent of the free-stream Mach number. It
has been pointed out to the author that equation (12) can also be obtained
by applying the one-dimensional continuity equation to a stream tube
adjacent to the surface of the body cone. In this connection it is noted

that, to a first approximation, the resultant speed Ju? + ve = Jvkz + Vr2
1s constant near the body-cone surface; since the flow is isentropic, a
similar statement applies to the density. However, it should be noted,
also, that constant resultant speed and constant density are not a part

of the approximate solution to be developed.

DERIVATION OF APPROXIMATE SOLUTION

In order to develop an approximate solution for axially symmetric
flow over a cone with an attached shock wave, equation (10) is now
assumed to hold throughout the flow field behind the shock wave. If the
coefficient T in the first of equations (7), namely,

dv, . dv.

ar ar
is replaced by its value as determined by equation (10), the resulting
differential equation can be written in the form

d 2 —
a;(loge vy + Tg loge Vr) =0
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Hence,

v-x(vr)T82 = Constant

vk(vf)Tsz = vk,s(vf,s)Tse (13)

When the approximate equations (10) and (13) are solved simultan-
eously with the use of equation (8), the resulting approximate equations
for the velocity components vy and v, can be written as

- 2
8in“6
Vx - tan O 5 (llpa)
Vx, 8 tan es
tan c0326S
r ( 95) (14D)
vr,s tan ©

Since the boundary values of the velocity components are related to the
resultant velocity ug at the body-cone surface by the equations

Vx,s = Us cos Og (15a)
Vy,s = Ug 8in O (15b)

it is seen that equations (14) essentially give the velocity components
in terms of the variable 6 and any two of the four parameters vx,s’
V.

r,s» Ugs 8nd 0. (In the solutions of refs. 2, 3, and 4, the param-
eters which have been chosen are ug and 6g.)

In deriving the approximate relations (14), use was made of the
first of equations (7), but not the second. The significance of neg-
lecting the second of equations (7) is discussed in appendix A.

The approximate equations (14) relating the velocity field behind
the shock wave to the velocity at the body-cone surface may, in some
cases, be combined with information on strong shock waves in a real gas
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to obtain estimates of the effects of vibrational excitation and dis-
sociation on the flow over conical tips in the hypersonic range. Such
estimates will be most accurate when the relaxation distance measured
along a streamline is everywhere negligibly small in comparison with
the length of the conical tip measured along a generator, that is, when
the distortion of the conical form of the flow field caused by relaxa-
tion effects is insignificant.

In returning to the development of the theory based upon. the
approximate equiftion (10), consideration is-again restricted to perfect
gases; thus, in particular, tThe change in state of the gas across the
shock wave is assumed to be of the Rankine-Hugoniot type and the effects
of vibrational excitation and dissociation are assumed not to occur.

The theory of the oblique shock wave gives, for the velocity components
Vx,w &nd vy, immediately behind the wave, the exact equations

\
7 - 1,2 1/2
V. = 2 1 2 (sin29 1 )
X,Ww - w - T
’ 1+7'1M2 7+ 1 M
2
> (16)
y -1 1/2 :
) 2 . 2 2 1
v = (cot 8,) —=— (sin 0, - ——)
r,w -1 + 1 W
’ 147 M 7 s
2
In line with the previous notation, the velocity components VX, and

Vr,w are parallel and perpendicular, respectively, to the free-stream

direction; as before, they are referred to the limiting velocity c.
The free-stream Mach number and the shock-wave angle are denoted by M
and 6, respectively.

Since equation (10) is assumed to hold throughout the flow field
behind the shock wave, immediately behind the wave it becomes

Vx,w I S S

Vr,w tan 6y Tsz sin26B
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When the velocity components in this equation are replaced by their
values as given in equations (16), the resulting approximate equation
is

2 2 1) 2
—— (sin 9W - ﬂé) = sin es

or

61n°0y = — + L’él s1n°0g (17)

M2

In this approximate equation the shock-wave angle, the free-stream Mach
number, the body-cone angle, and the ratio of specific heats are related
in such a way that the equation may be solved for any one of the four
parameters in terms of the other three. It is evident that the equation
becomes exact in the 1limit as the body-cone angle approaches zero.

An interesting theoretical comparison between the cone and the wedge
can be obtained by using the approximate equation (17) and its exact
counterpart from the oblique-shock-wave theory (ref. 11, p. 57). TFor
infinite Mach number, it follows from equation (17) that the limit of
the ratio of the shock-wave angle to the cone angle, as the cone angle
approaches zero, is given by

m(e—“) = j1E2
6 - 2
8g—>0\"s Moo

The corresponding limit in the case of the wedge is easily found to
be (y + 1)/2.

The approximate equation (17), for given values of the free-stream
Mach number M and the cone angle 8g, gives essentially one signifi-

cant value for the shock-wave angle 6,. Moreover, this value is, in

general, a reasonably good approximation to the physically obgerved or
"first solution" value of 6y, but not to the larger "second solution"
value. (See ref. 4.) This is consistent with the limitation of the
applicability of equation (10) to cases in which the shock wave lies
near the cone surface.

The approximate expressions that result for the velocity components
immediately behind the shock wave, when equation (17) is used to replace
8y in equations (16), are
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1/2
7-lMe /
) 2
Ve g = T cos Bg (18a)
’ 14+ 2221
2
— /2
1/2 Mz vy + 1 2
2 M.2 - l+ ) S
V. = - sin26
T, 5
y -1
1+
2 N i (180)

Equations (18), then, give the approximate values of the velocity com-
ponents immediately behind the wave in terms of the cone angle and the
free-stream Mach number.

Using equation (1ksa), evaluated just behind the shock wave, together
with equation (15a) yields the approximate relation

2
tan 8in“0
e = Vx,w 95 B
® " cos 8g \tan 6y

Vhen equations (17) end (18a) are used to eliminate
equation (19), the resulting expression for ug is

(19)

6y and vy W from

o \1/2 2(
M M o-\1

17 (cos 6g)
2

2
_}sin 0g
7+ 1 2 2 2
+ M sin 93
2 2

1 2 > Os
7+ M?sin Gs
2

y -1
2
4

1+ 1+

(20)

In this approximate equation for the velocity at the surface of the
body cone, as in the case of equations (18), the parameters are the
free-stream Mach number M and the cone (semivertex) angle Bg

Thus, equaetions (i), (15), (17), (18), and (20) give an approxi-
mate description of the velocity field and the orientation of the
attached shock wave in terms of the cone angle, the free-steam Mach
number, and the adiabatic constant of the gas.
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The pressure ratio across the shock wave is given by the exact
equation (ref. 11, p. 5T)

v 27 M?sinzeW _r=1
7

.Pl y+ 1 + 1

where Pq is the static pressure in the free stream ahead of the wave
and Py, is the static pressure immediately behind the wave. Replacing

sin29w in this equation by its -approximate value as given in equa-
tion (17) gives the approximate expression

™ -1+ pPeineg (21)
Py

Since the flow from immedistely behind the shock wave to the surface of
the body is assumed to be isentropic,

Dy 1 - uS2 7-1
s B (22)
vl - (vx,w)" - (vr,w) '

where pg is the statlic pressure at the surface.

Consequently, the surface pressure coefficient Cp,g, which is
given by

_ 2 [Ps Py
= (5 ns ) =

can be calculated approximately, with the use of equations (18), (20),
(21), and (22), for given values of the body-cone angle, the free-stream
Mach number, and the ratio of specific heats.

Although it is apparently not worthwhile in the general case to
reduce this set of equations (that is, equations (18) and (20) to (23))
to a single expression for the pressure coefficient, considerable sim-
plification does result when the free-stream Mach number becomes infinite.
This special case, vwhich is of some theoretical interest, is discussed in
appendix B.
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COMPARISON WITH OTHER SOLUTIONS

In order to compare the present approximate solution with the
three approximate solutions of Eggers and Savin (ref. 8), computations
have been carried out for air with 7 = 1.405 in a number of cases
which represent rather wide ranges of the cone angle and the free-stream
Mach number; the cases have been selected so as to correspond to exact
solutions of reference 4. The approximate methods were used to calcu-
late the shock-wave angle 6y, the surface velocity ug, and the sur-

face pressure coefficient Cp,s‘

The first approximate solution of Eggers and Savin for the cone is
given in the form of equations (12) and (19) of reference 8. The first
of these equations is an approximete expression for the flow-direction
angle. The Mach number parameter occurring in the equation is evaluated
by solving the equation simultaneously with the appropriate oblique-
shock-wave equations; a semigraphical method, or its equivalent, may be
used to do this. When the necessary parameters have been determined,
the two equations give the flow direction and speed, respectively, in
the flow field behind the shock wave as a function of the position
angle 6. The solution is primarily applicable to slender cones.

Equations (27) and (30) of reference 8 make up the second approxi-
mate solution presented by Eggers and Savin. The computational details
are similar to those of the first method. The second solution is pri-
marily applicable to cases in which the shock wave lies close to the
body-cone surface and, in this respect, the solution is similar to the
present approximation. Reference 8 indicates that the second method,
when it is applicable, is to be preferred to the first method.

The third approximate method given by Eggers and Savin (appendix A
of ref. 8) corresponds to the limiting case of the solution of the
present report for small cone and shock-wave angles.

In a note on the relation of the hypersonic -similarity law to axlally
symmetric flow over cones, lees (ref. 12) has developed an approximate
solution which is comparable to the third method of Eggers and Savin
but which is, in general, less uniformly accurate in the calculation of
both the shock-wave angle and the surface pressure coefficient. The
approximate expression obtained by Iees relating the wave angle to the
cone angle, the free-stream Mach number, and the specific-heats ratio
can be put into the following form:

2 1 y+1, 2| Oy 2
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vhich permits an easy comparison with equation (A7) of reference 8, that
is

2 _ 1 y+ 1,2
T

and with equation (17) of the present paper.

The comparison of the three approximate solutions of reference 8
with the approximate solution of the present paper is given in figure 2.
In order to facilitate the comparison of the accuracies of the methods,
the approximate results are presented in the form of ratios of the cal-
culated values to the exact values as given in reference L.

Figure 2 generally shows that, for 6g = 5°, the present method is

considerably less accurate than the lengthier first and second methods
of reference 8 but is approximately equivalent in accuracy to the third
method of reference 8. For 6g = 20°, the present method is slightly
less accurate than the first and second methods of reference 8, but is
considerably more accurate than the third method. For 64 = 359, the

present method is slightly more accurate than the second method of
reference 8, and is considerably more accurate than the third method.

Figure 3 shows that the present approximation compares favorably
in both accuracy and uniformity of accuracy with the first- and second-
order or smell-perturbation solutions.

For given values of the cone angle 6g and the ratlo of specific
heats 7, equation (20) may be used with successive approximations to

/ -1
determine the free-stream Mach nmumber which corresponds to ug = 7 T
7

that is, to a Mach number of unity on the surface of the body cone.

These calculations have been carried out with 7y = 1.405 for cones
ranging in semivertex angle from 0° to 50°, and the results are presented
in figure 4 together with the corresponding exact data (ref. 4). The

two curves, approximate and exact, give, as a function of the cone angle,
the minimum free-stream Mach number for which the flow is entirely
supersonic.

A detailed examination of the accuracy of the present approximate
solution in calculating the shock-wave angle 6y, the surface veloclty ug,

and the surface pressure coefficient Cp,s is given in figure 5 for

y = 1.405. The computations were performed for several cones with 6g
ranging from 5° to 50° for Mach numbers corresponding to those for which
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exact calculations were available in reference 4. The lower Mach num-
ber limits of the curves correspond to a surface Mach number of unity
(consistent with the approximate curve of fig. 4). The tendency toward
increagsed accuracy at the high Mach numbers is evident in all the cases
shown in figure 5.

For the limiting case of infinite Mach number, which is discussed
in appendix B, the approximate method has been applied to the calcula-
tion of the surface pressure coefficient taken, for convenience, in
ratio to the Newtonlan pressure coefficient (CP:S)N = 2 singes. The

computations were carried through for three values of the ratio of
specific heats (7 = ]_;;, 1.405, 1-32-) with 6, renging from 0° to 50°.

The results are compared in figure 6 with the exact results given in
reference 4 for 7y = 1% and 7y = 1.405, and with two points obtained

by the numerical integretion of equations (7) for 7 = #%.

CONCLUDING REMARKS

It has been shown that the streamlines in an angular neighborhood
of the surface of an unyawed circular cone with an attached shock wave
are, to a first approximastion, portions of hyperbolas. This fact has
been used as & basis for the development of an approximate solution in
which the shock-wave orientation and the flow field behind the shock
wave are given explicitly in terms of the free-stream Mach number, the
vertex angle of the body corne, and the ratio of specific heats of the
ges. The approximate solution has been compared with other approximate
solutions for the cone.

Iangley Aeronautical Laboratory,
Naetional Advisory Committee for Aeronautics,
Langley Field, Va., July 1, 1955.
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APPENDIX A
SOME MATHEMATICAL ASPECTS OF THE APPROXIMATION

Tt has been shown that equations (14) constitute an approximate
solution of the nonlinear system of differential equations (7). More-~
over, the first of equations (7) is satisfied identically by the approxi-
mate expressions for the velocity components v, and v, given in equa-

tioms (14). Direct calculation from equations (1%) and (15) yields the
equation

dvx B Ve

2

1+ Tg

which is identically satisfied by the approximate expressions for vy

and vy. Therefore, the approximate expressions for vx eand vy make
up an exact solution of the following system of differential equations:

dvy dv. aevr

_ r

T = (A1)
ar aT g2(1 4 7,2)

The factor a2 has been inserted in the numerator and denominator of
the right-hand expression in order to permit a better comparison with
equations (7). It is now evident that the approximation embodied in

equation (10),; which led to the approximate solution (14), is equiva-
lent to approximating the system of equations (7) by setting the fac-
tors 1+ T2 and vy - Tvx equal to constants, namely their values

at the body-cone surface, and solving the resulting linear system of

differential equations exactly.

Tt is noted from equation (3b) that the factor vy - Tvx can

Vp = TVy = V 8ec 6 = v‘/l + T2

Thus, setting the factor v, - Tvy 1in the nonlinear expression of

equations (7) equal to its value at the surface of the body come (that
is, zero) 1s equivalent to neglecting the normal velocity component v
in comparison with the local speed of sound a. If this approximation
alone is made in the system of equations (1), which is equivalent to
the system of equations (7), the resulting system can be written in the
form of a second-order, linear differential equation, that is,

be expressed as
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d%u

8ot e ™ you-o (A2)
202 T

When this equation is expressed in terms of cos 6 as the independent
variable, it is easily recogrized .as the Legendre equation for n = 1.
Its general solution can be written in closed form and is (ref. 13)

u=Acose+B(%coselogeM-l>

1l - cos 6

where A and B are arbitrary constants to be evaluated in terms of

the boundary values. This approximation, which gives good results

when v2 << a2, was recognized as a good approximation in the hypersonic
speed range a number of years ago by several persons, independently, at

the Iangley Aeronautical Iaboratory. The approximation associated with

the ILegendre equations has been found to lead to results which are more
complex than those which have their origin in the approximate equation (10).

The only approximation which has been introduced in developing the
approximate solution of the present report for the axially symmetric
flow over a cone with an attached shock wave is that of equation (10).
This basic approximation has been found to be equivalent to specifying
a flow pattern in which the streamlines are portions of hyperbolas of
the type described earlier. TInasmuch as the second of differential
equations (7) was not used in deriving the approximate solution, the
problem was not overdetermined by the introduction of equation (10).
The relation of the second of equations (7) to the approximate sblution
is clear from the form of the approximate system of differential equa-
tions (Al) which was found to be equivalent to introducing the approxi-
mation embodied in equation (10).
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APPENDIX B
THE ILIMITING CASE OF INFINITE MACH NUMBER

For the limiting case of infinite free-stream Mach number, equa-
tions (18) and (20) to (23) yield the approximate expression

A

-
sin“eg|7-1
1 - 232 sino, 8

1- coszes T

7 + 2

(CP,B)M=co 1y + = cos“8g (BL
c |2 2 BL)
( p,s)N 7 8in“0g

where (CP:S)N denotes the surface pressure coefficient according to

the inelastic—impact theory of Newton, that is,

(QP,S)N =2 sin29s

When sin268g<< 1, the application of equation (Bl) is, under normel
observances of accuracy, subject to rather large computational errors.
For such cases, it is preferable to use an approximate form of equa-
tion (Bl) obtained by expanding the quantity

y + 1 sinees

1 - 51n°6g

2
1 -

cos“6g oY >

cos“Bg

in powers of sinzes. The resulting series is

2 2
+1 -1 +1 1 +1
(l + loge Z—'z—') sin295 + 7 > - loge 7 2 - é‘ (loge 7 > )] (Sinaes) d . . .

Consequently, for sin®6, << 1, equation (Bl) takes the approximate form
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1
Cp,5) 1 -1 11 7 + 1\2
( )/ Mo 7+ 1 1+ loge %. + _7_—2— - ].Oge Z—;—- - -é- (loge —2——) Sineee (32)

(%%@N i 2r

For es'§ 10°, this equation is generally to be preferred to equation (B1)
in performing numerical computations.

Finally, equation (Bl) permits one to write
8
1im 1oge-gigillkﬁ
y—>1 (CP:S)N

after the indeterminate form concerned has been resolved. Thus, it
follows that

=0

1im (CP)S)M=°° = (CP:S)N (BB)

y—>1

Since the inelastic-impact theory of Newton is applicable to the flow over
an unyawed circular cone of a gas with an infinite number of internal
degrees of freedom, equation (B3) shows that equation (Bl) becomes exact
in the limit as y—>1. Similarly, equation (17) predicts correctly that,
for infinite Mach number and ¢ = 1, the shock wave lies on the body-cone
surface. For given values of the velocity and specific enthalpy of the
gas ahead of the shock wave, the free-stream Mach number necessarily
becomes infinite in the limit as the ratio of specific heats approaches
unity. At the same time straightforward analysis more generally shows
that the approximate expression (17) for the shock-wave angle and the
approximate expression for the surface pressure coefficient which can be
obtained from equations (18) and (20) to (23) both become exact in the
limit as 7-—1; that 1s, they reduce to the corresponding expressions

in the inelastic-impact theory of Newton. Therefore, the present approxi-
mate solution for the cone becomes exact in the limit as y—>1 whether
the free-stream Mach number is restricted to the wvalue infinity or is

not restricted. ’
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